Reinforcement Learning for Adaptive Routing

نویسندگان

  • Leonid Peshkin
  • Virginia Savova
چکیده

Reinforcement learning means learning a policy—a mapping of observations into actions— based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. We present an application of gradient ascent algorithm for reinforcement learning to a complex domain of packet routing in network communication and compare the performance of this algorithm to other routing methods on a benchmark problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

CS 229 Final Report: Location Based Adaptive Routing Protocol(LBAR) using Reinforcement Learning

In this paper we present an algorithm for a location based adaptive routing protocol that uses both geographic routing and reinforcement learning to maximize throughput in our mobile vehicle network. We use reinforcement learning to determine the correct direction to forward a packet and then use geographic routing to forward a packet toward the network sink. We use an extension of the q-routin...

متن کامل

Predictive Q-Routing: A Memory-based Reinforcement Learning Approach to Adaptive Traffic Control

In this paper, we propose a memory-based Q-Iearning algorithm called predictive Q-routing (PQ-routing) for adaptive traffic control. We attempt to address two problems encountered in Q-routing (Boyan & Littman, 1994), namely, the inability to fine-tune routing policies under low network load and the inability to learn new optimal policies under decreasing load conditions. Unlike other memory-ba...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

Reinforcement Learning with Application to Adaptive Network Routing

Reinforcement learning (RL) is learning from interaction with an environment, from the consequences of action, rather than from explicit teaching. It is the learning performed by an agent by trial and error interactions with a dynamic environment. This paper discusses Reinforcement learning along with application to static routing.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0703138  شماره 

صفحات  -

تاریخ انتشار 2002